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ABSTRACT

This Final Technical Report for the period from 1 December 1993 to
30 November 1997 presents a summary of research performed on two classes of
materials prepared by the sol-gel method. The first class of materials is the
Ormosils. Work has been carried out on the structure and mechanical properties
of Ormosils and a model was presented to account for the dependence of
properties on structures, especially for the rubbery Ormosils. The high-
temperature stability of rubbery Ormosils was found to be enhanced by the
presence of small amounts of iron ions. A method was developed for the
introduction of carbon black into Ormosils. Aerogels of 95% porosity were
known to be extremely fragile. By the incorporation of polydimethyl siloxane,
the resultant Ormosils were rendered rubbery. The second family of materials
investigated consisted of ferroelectric thin films. Single crystals of KNbO, films
were grown by the sol-gel method, etched to form waveguides and shown to
emit green light when impinged upon by infrared lasers due to second harmonic
effects. A theory was postulated which enabled the understanding of ferroelectric
behavior shown by amorphous oxide films. A technique was developed for the
successful growth of multilayed stack of alternating oxide films. A new family of
organic-inorganic hybrids which showed ferroelectric behavior was discovered by
the involrporation of an organic dye, TDP, into the SiO, network of a gel

containing minute crystallites of LiNbO, or BaTiO,.
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1. Introduction

This grant was awarded in December 1, 1993. The main objective was
to prepare two families of advanced ceramic materials based on the liquid
solution approach. The first family of advanced ceramics to be synthesized
was ferroelectric thin films such as BaTiO, and LiNbO,. The technique
selected was the sol-gel method.  Under this general heading of
“ferroelectrics” it was proposed that three separate but related tasks would be
performed. These were (a) the preparation of single crystals, (b) the
preparation of amorphous ferroelectrics and (c) the preparation of
multilayered structures based on alternating conductive and insulating films.
The second family of advanced ceramics to be investigated was supposed to be
that based on silicon nitride. However, early in 1994, because of the potential
usefulness of Ormosils (organically modified silicates) as thermal insulation
for rocket motors and the interests of the Phillips Laboratory at the Edwards
Air Force Base, permission was obtained from Captain Hugh de Long to
postpone research on silicon nitride and to perform research on the Ormosils
instead. This progress report covers the entire period of the grant from
1 December 1993 to 30 November 1998.

2. Research on Ormosils

Most of our research on Ormosils are based on the reactions between
tetraethoxy silane (TEOS) and polydimethylsiloxane (PDMS). Different ratios
of TEOS to PDMS are reacted according to the method shown in Figure 1. In
the past four years, our research on Ormosils can be conveniently divided

five parts.

(a)  Structure and Mechanical Properties

When PDMS is added to TEOS, the mechanical properties of the
resultant Ormosils change continuously as shown by Figure 2. Some actual
values of mechanical properties are shown in Table 1 for the rubbery

Ormosils. At low PDMS concentrations, the Ormosils are hard, brittle solids.
1



Table 2 shows the values of H/K_where H is the Vickers hardness and K. is
the fracture toughness. This ratio is defined as the index of brittleness. When
the PDMS reaches 10 wt.%, the brittleness of the silica gel has decreased by
50%. These ‘hard” Ormosils are some 5 to 8 times harder than most organic
plastics. Figure 3 gives the Vickers Hardness as a function of PDMS content.
A theory was developed to enable the calculation of hardness. The agreement
between experimental and calculated values of hardness is excellent as shown
in Figure 3. The structural changes to the silica network as a result of the
chemical reaction between TEOS and PDMS are depicted by Figures 4 and 5.
The hard Ormosil structure is presented in Figure 4(b) and the rubbery
Ormosil structure is given in Figure 5. The rubbery behavior is explained by
the mechanism of coiling and uncoiling of the PDMS chains linking the
clusters of SiO, as illustrated in Figure 6. At present, various industrial
laboratories are evaluating the potentials of hard Ormosils as abrasion

resistant coatings for organic plastics.

(b)  High-Temperature stability of Rubbery Ormosils

Since a rubbery Ormosil may contain as much as 70 wt.% of SiO,, it is
natural to inquire as to the possibility of preparing new high temperature
stable rubbers with Ormosils. As prepared, the PDMS-SiO, rubbery Ormosils
would maintain their rubbery property even after a few hours of heating at
200°C in air. Although this is better than common rubber, it is necessary to
inquire why the rubbery behavior of Ormosils should be lost at temperatures
in excess of 200°C and if there are methods to make improvements of the
high temperature stability. During the period of this grant, we discovered
that very small amounts of iron added to the original Ormosil liquid solution
in the form of FeC/,, or Fe,O,, can increase the thermal stability of Ormosil
very significantly. Figure 7 shows the remarkable effects of small amounts of
Fe. The presence of Fe appears to be ineffective in N,. It may therefore be
presumed that the oxidation of the CH, groups on the PDMS chains causes

the loss of rubbery elasticity. Iron is also known to endow high temperature
2
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stability in organic polymers. It has been suggested that some of the iron ions
exist in the Fe® state. These Fe” ions will use up oxygen molecules and
convert to Fe* state and thus less oxygen will be available to react with the
CH, groups. This type of explanation is unsatisfactory since the ratio of the
amount of Fe ions to CH, groups can be only 0.001 and the Fe is already
effective (see Figure 7). At present, an acceptable mechanism for the effective
influence of Fe ions is not known. We have found that another transition
metal ion, vanadium, is also effective in enhancing high temperature

stability although it is not as pronounced as Fe.

(¢)  Ormosils as High Temperature Insulators - Collaboration with
Edwards Air Force Base

During this grant period, we have collaborated with Dr. J. Lichtenhan
of the Phillips Laboratory at the Edwards Air Force Base to fabricate and to test
Ormosils as insulators for rocket motors. Large sheets of Ormosils were
fabricated and submitted to the Phillips Laboratory for testing. Such samples
are shown in Figure 8. The testing method is illustrated in Figure 9. The
initial results were promising. However, the tensile strengths of the Ormosil
samples were relatively low and created a problem for handling when the
insulation is applied to the rocket motor casing. Because of the lack of
human resources we were unable to continue with experiments to strengthen
the Ormosils which remain to be a promising family of insulation materials

for high temperature applications.

(d)  Additions of Carbon Black to Ormosils

Because the additions of carbon black to organic rubber can cause large
changes of mechanical properties, it was logical to consider the effects on
Ormosils.  Three types of carbon black were obtained from the Degussa
Corporation: SB4, SB5 and FW200 have average particle sizes of 25, 20 and 13

nm, respectively. It was impossible to add more than 3 wt.% of carbon black
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to the Ormosil solution because of agglomeration. The method developed is
shown in Figure 10. The compositions studied and the density and porosity
results of the filled Ormosils are shown in Table 3. Samples containing the
FE200 were blue in color, presumably because of Rayleigh Scattering from the
ultrafine carbon particles (13 nm). The samples containing the larger carbon
particles were gray in color resulting from a combination of scattering and
absorption. The mechanical properties of Ormosils were found to be
significantly influenced by the concentration and the size of the carbon black
particles. Table 4 shows the FW200 can affect the tensile strength, elongation
and elastic modulus of Ormosils more than the larger particle carbons. Table
5 shows the influence of carbon concentration. In Figure 11, tensile strength
is plotted against carbon black concentration and in Figure 12, resilience is
shown as a function of carbon black type and concentration.

Although both the tensile strengths and resilience of Ormosils can be
increased significantly via the addition of 2 wt.% of carbon black, the increases
are relatively minor as compared to the influence of carbon black on common
organic rubbers. Secondly, the process shown by Figure 10 is highly complex
and it will not be cost-effective for large scale preparation. Much more
research will have to be done if serious applications of Ormosils are

contemplated in the future.

(e)  Rubbery Aerogels

Aerogels made from the supercritical drying of SiO, gels can have more
than 99% porosity and are known as the best thermal insulator ever
synthesized. Because of the brittleness of SiO, and the low mechanical
strengths of such a porous solid, aerogels have not been used widely as a
thermal insulator. Since the brittleness of silica gel can be greatly reduced by
network  structural = modification  via the incorporation of
polydimethylsiloxane PDMS chains, this research was undertaken to study
the preparation and properties of rubbery “aero-Ormosils” or “Aeromosil.”

Two methods were developed to synthesize these new materials and shown
6



Table 3

Density and Porosity of Carbon Black filled ORMOSILs

Material Measured Densitsy Calculated Fully Calculated
Py (gm/cm®) | Dense Material | Porosity p, (g/cm’)
_ Density p, (g/cm’)

60/40 ORMOSIL 0.45 1.29 0.65

| ORMOSIL with 1 wt.% SB4 0.49 1.30 0.62
ORMOSIL with 2 wt.% SB4 0.56 1.31 0.57
ORMOSIL with 3 wt.% SB4 0.58 1.32 0.56
ORMOSIL with 2 wt.% SB5 0.89_ 1.31 0.48
ORMOSIL with 1 wt.% FW200 0.75 1.30 0.42
ORMOSIL with 2wt.% FW200 1.01 1.31 0.23
ORMOSIL with 3 wt.% FW200 1.03 1.32 0.22

Table 4 Mechanical Properties of FW200, SB5, and SB4 ORMOSILs
Material Strength Elongation Elastic Modulus
(Mpa) (%) (MPa)

ORMOSIL with 2 wt.% FW200 2.50 4.50 27.4
(primary particle size: 13nm)
ORMOSIL with 2 wt.% SB5
(primary particle size: 20 nm) 1.05 5.8 10.3
ORMOSIL with 2 wt.% SB4
(primary particle size: 25 nm) 0.89 16.1 8.1

Table 5 Mechanical Properties of ORMOSILs with Increasing Loading
Material Strength Elongation Elastic Modulus
(MPa) (%) (MPa)
ORMOSIL with 1 wt.% SB4 0.64 8.1 5.8
ORMOSIL with 2 wt.% SB4 0.89 15.1 8.1
ORMOSIL with 3 wt.% S_Bil 0.90 16.1 8.1
ORMOSIL with 1 wt.% FW200 1.40 11.2 23.6
ORMOSIL with 2 wt.% FW200 2.50 4.5 27.4
ORMOSIL with 3 wt.% FW200 2.58 4.5 29.9




in Figure 13. The supercritical drying equipment is shown in Figure 14. The
bulk density, porosity and specific surface area of some aeromosils are shown
in Table 6. Pore size distributions for the acid and the acid/base catalyzed
samples are shown in Figure 15. That the Aeromosils are indeed rubbery is
shown in the three photographs of Figure 16. The sample is shown to have
been reduced in length by 25% and then recovered fully. A tentative model
to explain this rubbery behavior is presented in Figure 17. Rubbery Aerogels
are thus a reality. For practical applications, a method will have to be
developed for the cost-effective production of rubbery aerogel pellets rather
than sheets.

3. Research on Ferroelectrics

Our research on ferroelectrics via the sol-gel method has been
concentrated on both crystalline and amorphous thin films. The program is
basically a continuation of our previous effort under AFOSR-91-0096 which
terminated on 30 November 1993. The most important aspect of our program
is the discovery of ferroelectricity in new organic-inorganic hybrid materials.

Our program is summarized in the four separate sections below.

(@)  Single Crystal Ferroelectrics

Single crystalline films of KNbO, were successfully grown epitaxially
on MgO and S5rTiO, substrates. Figure 18 shows the lattice fringe image of
KNbO; on SrTiO,. Narrow channels were etched into the films to form
waveguides as shown in Figure 19. Infrared laser beams of 1.06 um were
directed into the film and green light of 0.532 um was generated via second
harmonic modes. Fe was also introduced into the sol-gel solutions as dopants
for the KNbO,. The third-order susceptibility of the doped film now enabled
the intensity amplification of laser light as shown in Figure 20. We have
therefore demonstrated conclusively that the sol-gel method can be used to
fabricate ferroelectric single crystal films with useful second-order and third-

order nonlinear optical properties.




Table 6 Bulk density with corresponding porosity and specific surface
o area with linear correlation coefficient from BET

Porosity SSA Correlation
(% theory) (m®/g)
96.8 1169 0.9969
97.2 1370 0.9993
96.6 1274 0.9990
96.7 1193 0.9990
95.6 818 0.9997
96.6 786 0.9993
96.4 1103 0.9991
94.3 920 0.9995
90.1 659 0.9996




()  Multilayered Thin Film Structures

It has been proven for covalent semiconductors that a multilayered
structure consisting of alternating layers of insulator and semiconductor can
result in a “quantum well.” Such quantum wells hold promise for many
devices in photonics. The equivalent multilayered structures with oxides had
not been fabricated. During this grant period, an automatic dip-coating
equipment was designed and constructed (Figure 21). Two solutions A and B
are placed in separate containers standing on a rotating platform. The
substrate first dips into A and is then hoisted slowly upwards into a furnace.
After the film A is heat-treated, the substrate is then lowered into solution B
and the process repeated. The speed of the dipping can be controlled. We
were able to prepare multilayers of amorphous BaTiO, and SiO, to test the
utility of the equipment. Up to 12 pairs of films with thickness of the order or
300A each were fabricated as shown in Figure 22. The optical quality of the
stack was excellent. Due to the shortage of human resources, we were unable

to continue with this program.

(c)  Amorphous Ferroelectric Films

In our previous AFOSR Grant No. AFOSR-91-0096 we first reported
that amorphous LiNbO, film prepared by the sol-gel method exhibited
ferroelectric behavior. During this period such “amorphous ferroelectricity”
was confirmed for BaTiO,; and PZT. The presence of “ferrons”--extremely
small crystals of the order of 20A--was confirmed by high resolution electron
microscopy and proposed to be responsible for the observed ferroelectric
behavior. A model was generated to account for this anomalous behavior.
The model involves the coupling of dipoles via ferrons and the non-
crystalline part of the solid network as illustrated in Figure 23. A comparison
of experimental ferroelectric properties and those calculated based on this
model was very satisfactory as presented in Table 7. Table 8 gives a

comparison of the properties of polycrystalline film, amorphous film and
10



Table 7- Theoretical results in comparison with
experimental results

PZT

BaTiO,

Theoretical

Experimental

Theoretical

Experimental

Free energy
G-G, (J/mol)

-38

no

-3.7

no

Averaged value
of dipole
moments of
ferrons, <p,>,
(10% C cm)

17.2

22.55 (crystal)

7.8

17.7 (crystal)

Remanent
polarization P,
(uC/cm? from
statistical
thermodynamics

3.2

3.2

23

2.3

Remanent
polarization P,
(LC/cm?) from
statistical physics

3.9

3.2

2.1

23

Coercive field
E (1 0*V/cm)

5.0

7.8

6.5

10.5

Permittivity of
ferrons e,

no

1850 (crystal)

no

210 (crystal)

Permittivity of
porous matrix g,

98

160 (overall)

75

90 (overall)

Permittivity of
dense matrix ¢,

165

no

140

no

Volume fraction
of ferron v, (%)

16.3

10 or more
(HRTEM)

17.6

10 or more
(HRTEM)

Porosity of

overall film Vv,
(%)

9.2

no

10.3

no

Refractive index
of ferrons N

no

2.70 (crystal)

no

2.40 (crystal)

Refractive index
of dense matrix

Ms

232

no

223

no

Refractive index
of porous matrix

EN

2.1

2.1

2.0

2.0

11




Table 8 Electrical Properties of Polycrystalline and Amorphous BaTiO,
Thin Films at Room Temperature (Some data of Ceramic bulk

are listed for comparison)

Properties Polycrystalline Amorphous Ceramic Bulk
(850°C/6h) (400°C/1h) (1450°C/1h)*

Film’s thickness ¢ 0.3 mm 0.3 mm

Average grain 1000 no grains were > 4000

size (A)

Dielectric 210 (1 kHz) 90 (1 kHz) 1400 (1kHz)

permittivity

€ (25°C)

Resistivity (d.c.) 5.5x 10° 1.5 x 10° *

p (Qcm)

Pyroelectric 10 0.5 20

coefficient

p (nC/cm’K)

Remanent 19 23 26

polarization

P(C/cm?)

Coercive field 10 10

E. (kV/mm)

Breakdown 800 > 60 **

strength

E, (kV/mm)

Optical refractive 23 2.0 2.43 (n)***

index n 2.37 (n)***

* Data come from Ref. [1]

* %

***  Data from single crystal

Depends on dopants and processing




bulk ceramic BaTiO,. The amorphous ferroelectric film appears to be a

“weak” or “soft” ferroelectric.

(d)  Organic-Inorganic Hybrids

During this grant period, we prepared thin amorphous films from
solutions containing the double alkoxides of LiNbO, (and/or BaTiO,) as well
as TEOS. Our gelation and drying, the films manifested ferroelectric behavior
and “ferrons” were again observed. This prompted us to examine gels made
from solutions containing the LiNbO, (and/or BaTiO,) double alkoxide, TEOS
and TDP, a complex dye the structure of which is shown in Figure 24. On
gelation, the TDP and TEOS would yield a silica network and ferrons of the
LiNbO, (and/or BaTiO,;) would be trapped in the network. Electrical
interactions would perhaps be possible between the ferrons as depicted in
Figure 25. Ferroelectric behavior was indeed observed as shown by the P-E
hysteresis loop in Figure 26. Ferrons were also revealed by high resolution
electron microscopy as shown in Figure 27. We also discovered that the
interactions between TDP and LiNbQO, and BaTiO, are different as shown by
the color difference of the films in Figure 28. The reasons for the different
behavior of LiNbO, and BaTiO, are not known and investigations are on-
going. These organic-inorganic hybrids constitute a new family of electronic

materials and are worthy of further studies.

13
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(b) Poling by Field E

Figure 23 The “ferron” coupling model for oxide ferroe
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Figure 24 TDP: Triethoxy-silyldinitro-phenylamine
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Figure

Electrical interactions of organic groups (arrow)
and inorganic groups (+ -) in a gel matrix
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Figure 26 P-E Hysteresis loop in gel film
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Figure 28 Organic-Inorganic Hybrid Films
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